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Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the information presented herein. The contents do not necessarily 

reflect the official views or policies of the Nebraska Department of Transportations nor the 

University of Nebraska-Lincoln. This report does not constitute a standard, specification, nor 

regulation. Trade or manufacturersô names, which may appear in this report, are cited only 

because they are considered essential to the objectives of the report. 

The United States (U.S.) government and the State of Nebraska do not endorse products 

or manufacturers. This material is based upon work supported by the Federal Highway 

Administration under SPR-1(19) (M091). Any opinions, findings and conclusions or 

recommendations expressed in this publication are those of the author(s) and do not necessarily 

reflect the views of the Federal Highway Administration. 

 

NOTE:  This report preferentially uses the term ócrashô to refer to a vehicular/train collision 

resulting in property damage and/or injuries and fatalities. However, the term óaccidentô is also 

used when referring to legacy items (e.g., US DOT Accident Prediction Model) or when 

referencing or quoting published literature. 
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Abstract 

The research objectives of this project were to update Nebraska Department of 

Transportation (NDOT) 1999 Nebraska Accident Prediction Model for Highway-Rail Grade 

Crossings (HRGCs) and to develop guidelines using Lancaster County Nebraska HRGCs for 

improving safety at urban gated HRGCs that are not designated quiet zones but are in the vicinity 

of quiet zone crossings.  

FRA crash and HRGC inventory data were utilized for estimation of the new model after 

inventory information on 742 HRGCs was updated. HRGC crashes for 2008-2018 period were 

used for model estimation while 2019 HRGC crashes were used for model prediction validation. 

After consideration of several different model formulations, a Poisson regression model with 

scaled parameters was selected as the 2020 Nebraska HRGC Crash Prediction Model.  

Lancaster County HRGCs consistency assessment was performed using Federal Railroad 

Administrationôs (FRA) Quiet Zone Calculator to analyze gated non-quiet zone HRGCs that are 

in proximity of designated quiet zone HRGCs. The general guidance on achieving a more 

consistent driving experience at such HRGCs is to consider the use of Supplemental Safety 

Measures including the use of mountable medians with reflective traffic channelization devices 

(vertical panels or tubular delineators) or non-traversable curb medians with or without 

channelization devices at non-quiet zone gated HRGCs that are in proximity of established quiet 

zones. A complete update of the statewide HRGC inventory is recommended to remove errors 

and missing values from the existing database. 
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Chapter 1 Introduction 

1.1 Background 

Highway-rail crossings are junctions between the rail and the highway network where the 

two meet. More than 97% of these crossings are at the same level (at-grade) in the US; such 

crossings are commonly referred to as highway-rail grade crossings (HRGCs). While trains have 

the right-of-way at HRGCs, every year there are a number of reported crashes when motor 

vehicles and other highway users fail to yield the right-of-way to trains. Motor-vehicle involved 

crashes at railroad crossings are invariably more severe compared to crashes on the rest of the 

surface transportation network mainly due to train involvement. In 2019, the number of crashes 

reported in the US at HRGCs was 2,220 resulting in 294 fatalities; fatal crashes were 13.24% of 

total reported incidents (Federal Railroad Administration 2020). During the same year, Nebraska 

accounted for 29 crashes at HRGCs involving 6 fatalities and 18 non-fatal injuries; fatal crashes 

were 17.24% of total reported crashes. 

Rail crossing safety models based on reported crash data have provided an understanding 

of crash phenomenon at HRGCs, identifying associated factors in an attempt to improve safety, 

and for ranking competing rail crossings for safety improvement resource allocations. The 

Nebraska Department of Transportation (NDOT) currently utilizes the 1999 Nebraska Accident 

Prediction Model (HNTB, 1999) for rail crossings to identify and rank crossings that may need 

scrutiny and perhaps subsequent safety improvements. Developed by the Midwest Research 

Institute (under contract to HNTB Corp.) in 1999, this crash prediction model was based on 5-

year rail crossing crashes and inventory data from September 1993 through August 1998. It 

updated the previously used 1973 Nebraska Department of Roads (NDOR) Hazard Index, which 

was a modified version of the NCHRP Report 50 Formula (NCHRP Report 50, 1968). The 



 

2 

 

model over-predicts (about 10%), and results may not be optimal as many changes have occurred 

in terms of train and motor vehicle traffic, crash trends, and rail crossing inventory information 

since its adoption. Other state DOTs have recently updated their rail crossing crash prediction 

models or are in the process of doing so. Given the newly available statistical modeling 

approaches and the availability of a relatively large dataset, the hope is that the updated model 

will outperform the existing NDOT Nebraska Accident Prediction Model for rail crossings. 

Furthermore, recent crashes reported at urban rail crossings in Nebraska call for a review 

of motor vehicle driver expectancy in terms of installed supplemental safety measures (e.g., 6-

inch high mountable barriers along roadway centerlines to prevent passing around crossing 

gates). Installation of supplemental safety measures or alternative safety measures is an FRA 

requirement when public agencies apply for Quiet Zone designation (crossings where trains are 

not required to sound horns). For example, some crossings in Lincoln, Nebraska are Quiet Zones, 

but other proximate crossings are not designated as such. This creates a situation where drivers 

may expect supplemental safety measures at all crossings and their expectations violated when 

using crossings not designated as Quiet Zones. An example is the August 18, 2017 crash at S. 

Folsom St. (Lincoln, Nebraska) crossing (USDOT ID: 083044D) that claimed the lives of two 

high school students. The victim in this crash attempted to pass around the lowered crossing 

gates while an Amtrak train was on its way toward the crossing. The presence of a barrier along 

the roadway centerline (a supplemental safety measure) would likely have prevented this crash. 

Therefore, there may be merit in installing supplemental safety measures at select urban 

crossings that are not Quiet Zones but have crossings designated as Quiet Zones in the general 

vicinity. 
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1.2 Objectives 

There were two objectives for this research: 1) to update NDOTôs 1999 Nebraska 

Accident Prediction Model for rail crossings using the latest crash and rail crossing inventory 

data, and 2) to develop guidelines for improving safety (via uniformity of driver expectations) at 

urban rail crossings that are not designated quiet zones but are in the vicinity of existing quiet 

zone crossings. HRGCs located in Lancaster County, Nebraska were candidates for the second 

objective.   

It was hoped that a newly developed crash prediction model that will outperform the 

1999 Nebraska Accident Prediction Model for rail crossings thereby allowing for more informed 

decisions regarding resource allocation for rail crossings. Guidelines for improving safety of 

urban crossings that are not quiet zone crossings will enable Nebraska public agencies to 

improve public safety and reduce possible liability from crashes at HRGCs. 

1.3 Research Outline 

This research comprised of five tasks; the first was a meeting with the project Technical 

Advisory Committee (TAC) to discuss the research approach and review of published literature 

on rail crossing safety conducted with an emphasis on crash prediction models for rail crossings. 

Chapter 2 of this report presents a summary of the reviewed publications pertinent to this 

research. Chapter 3, the methodology, provides details about the statistical techniques utilized in 

this research. Chapter 4 presents research efforts regarding data acquisition and average annual 

daily traffic (AADT) data update, including a 12-year (2008-2019) crash data set and the public 

crossing inventory from FRA. While some AADT data were out-of-date, the research team 

provided updated AADT values. Chapter 5 presents estimated statistical models on the expected 

number of HRGC crashes per year in Nebraska. Various factors were taken into consideration 



 

4 

 

with regards to their effects on crash occurrence at rail crossings, such as crossing characteristics, 

exposure measures, land use, etc. Chapter 6 provides an assessment of installed supplemental 

safety measures at urban crossings in Lancaster County that are not designated as quiet zones. 

Lastly, major findings from this research and conclusions are presented in Chapter 7. Guidelines 

on improving safety through installing supplemental safety measures at urban rail crossings are 

provided in Chapter 7 as well. 
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Chapter 2 Literature Review 

The latest guidance on HRGCs including safety engineering treatments are available in 

the Highway-Rail Crossing Handbook 3rd Edition (Ogden and Cooper, 2020). Besides providing 

general information on HRGCs, this handbook also summarizes current best practices and 

provides options for safety enhancements at HRGCs. It provides guidance on how existing 

standards and recommended practices may be applied in developing safe and effective treatments 

for HRGCs.  

The US Department of Transportation (DOT) Accident Prediction Model is a widely used hazard 

ranking model, currently used in 19 states for HRGC hazard ranking. Many states (e.g., Texas, 

Florida) have assessed the adequacy of HRGC hazard ranking models and/or developed new 

statistical models for hazard ranking. Other states, including Illinois and Missouri, have 

undertaken similar research studies but DOT staff reported the results of the studies could not be 

practically applied and therefore were not adopted (Sperry et al. 2017). Recent models developed 

for Florida and Texas utilize more modern statistical analysis for predicting crash frequency at a 

grade crossing. States such as North Carolina are moving toward an economic analysis model of 

hazard ranking to incorporate the US DOT model in a more comprehensive economic analysis of 

the grade crossing. Table 2.1 gives a summary of those models (Sperry et al. 2017). 
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Table 2.1 Usage of Different HRGC Safety Assessment Methods 

Formula/Method Number of States Percent of States 

US DOT Accident Prediction Model  19  38%  

State-Specific Formula or Method  11  22%  

None/No Formula Mentioned  11  22%  

New Hampshire Hazard Index  5  10%  

Multiple Formulas  2  4%  

NCHRP 50 Accident Prediction Model  1  2%  

Peabody-Dimmick Formula  1  2%  

Total All States  50  100%  

 

2.1 Peabody-Dimmick Formula 

The earliest rail crossing crash prediction model was the Peabody Dimmick formula, 

which was published in 1941 and used extensively through the 1950s (Peabody and Dimmick 

1941). It was based on five-year crash data reported at rural crossings in 29 states; the formula is:  

 

                                                    (2.1) 

 

where ὃ is the expected number of crashes at a rail crossing in five years, ὺ is the AADT, Ὕ 

represents the average daily through trains, ὴ is a protection coefficient (indicating presence of 

warning devices) and K is an additional parameter determined from a graph. The formula utilized 
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AADT and the number of through trains to measure crash exposure but does not take into 

account the temporal distribution of roadway and rail traffic. 

2.2 New Hampshire Hazard Index 

The New Hampshire Index is given by (Ogden 2007): 

 

                                                (2.2) 

 

where () is hazard index, ὠ is the AADT, Ὕ represents the average daily through trains and ὖ 

represents a protection factor (indicating the presence of warning devices). The basic formulation 

of the New Hampshire Index is based on AADT and train traffic. Several states developed their 

own hazard index formulae by using different values for ὖ and adding other factors, such as 

train speed, highway speed, population, sight distance, number of tracks, surface condition, 

alignment, presence of nearby intersections, etc. 

2.3 NCHRP 50 Accident Prediction Model 

The National Cooperative Highway Research Program (NCHRP) Report 50 (Ogden 

2007) reported the NCHRP Hazard Index for rail crossing assessment; it has the following form: 

 

                                               (2.3) 

 

where EA is expected crash frequency, A is vehicles per day factor (provided in tabular format as 

a function of vehicles per day), B is a protection factor indicative of warning devices present at a 

crossing and CTD is the current trains per day at the crossing. According to Austin and Carson 
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(2002), no formal definition of urban and rural areas accompanied the Index and significantly 

different crash predictions were possible by switching between urban and rural values. 

2.4 US DOT Accident Prediction Model 

The US DOT Accident Prediction Model was more comprehensive than previous models 

with the following form: 

 

                          (2.4) 

 

where K is a constant, EI the exposure index factor, DT is the day through trains, MS the max 

train speed, MT the number of main tracks; HP the highway paved factor, HL the highway lanes 

factor and HT is the highway type factor. 

The FRA has developed additional tools and resources to make the US DOT Accident 

Prediction Model more accessible to users by way of its GradeDec.net evaluation tool (US 

Department of Transportation 2018) and the Web Accident Prediction System (Federal Railroad 

Administration 2020) 

Besides some updates in the 1980s, the model structure of the US DOT Accident 

Prediction Model has not changed substantially since its initial development in the mid-1970s. 

The latest version was developed in 1986 by removing a variable for highway functional 

classification (Hitz 1986). 

2.5 Connecticut DOT Hazard Ranking Index 

This hazard index was first mentioned in the Connecticut Railway-Highway Crossing 

Program 2014 Annual Report (Connecticut Department of Transportation 2015). 
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                                          (2.5) 

 

where ὌὍ is Calculated Hazard Index, Ὕ is Train Movements per day, ὃ is the number of 

vehicle/train crashes in the last 5 years, ὃὃὈὝ is annual average daily traffic and ὖὊ is 

protection factor. 

2.6 Florida DOT Safety Hazard Index 

In 2014, FDOT updated its hazard ranking index which was developed by researchers at 

Florida State University (Niu et al. 2014). This is a hybrid crash prediction model/Hazard index. 

 

Logit model: 

                    (2.6) 

Prediction model                                             (2.7) 

Adjustment for Acc. History 
                                                                (2.8) 

Safety Index 
                   (2.9) 

 

where ὙὭίὯὰέὫὝὶὥὭὲzὃὃὈὝ, ὝὶὥὭὲ is a yearly average of the number of trains per day, 

ὃὃὈὝ is annual average daily traffic, ὓὛὝ is maximum timetable speed, ὌὡὛὖὈ is posted 

vehicle speed limit, ὝὶὥὧὯὰέὫ άὥὭὲ ὸὶὥὧὯίέὸὬὩὶ ὸὶὥὧὯί, ὒὥὲὩ is the number of 

highway lanes, ὊὰὥίὬ is dummy variable for the presence of flashing lights, ὣ is predicted the 

number of crashes per year at crossing adjusted for history, Ὄ is the number of crashes at 

crossings during history period, 0 is the number of years of crash history period, ) is safety index 
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value, ὓὥὼὖ is the maximum value of incident prediction, ὄ is the number of school buses at 

crossing, and Ὂ is a variable for warning devices. 

2.7 Missouri DOT Exposure Index 

This index was developed in 2003 (Qureshi et al. 2003)  

 

Passive Crossings:                                                                                         (2.10) 

Active Crossings:                                                                                                          (2.11) 

 

where 4) is traffic index, , SDO is sight distance obstruction 

factor, , ὠὓ is annual average daily traffic, ὠὛ is vehicle 

speed, Ὂὓ is daily freight train movements at a crossing, ὊὛ is freight train speed, ὖὓ is daily 

passenger train movements at a crossing, ὖὛ is passenger trains speed and Ὓὓ is daily switching 

movements at a crossing. 

2.8 North Carolina DOT Investigative Index 

This index was described in the North Carolina Railway-Highway Crossing Program 

2014 Annual Report (North Carolina Department of Transportation 2015). This index was 

initially developed in the 1970s and updated in the 1980s. 

 

                                  (2.12) 

where ὖὊ is protection factor, ὃὈὝ is average daily traffic, Ὕὠ is daily train volume, ὝὛὊ is train 

speed factor
  

πȢψ, ὝὊ is track factor, ὃ is number of crashes over history 
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period, ὣ is number of years in crash history, and ὛὈὊ is the sight distance factor =  ᶻ

ρφ. 

2.9 Texas DOT Priority Index 

This index was first developed in 2013 (Weissmann et al. 2013) and revised in 2015. Itôs 

a state-specific hybrid crash prediction model, given by: 

 

             (2.13) 

 

where µ is the predicted number of crashes per year, PF is protection factor, ὌύώὖὥὺὩὨ is 

dummy variable, UrbanRural is dummy variable, TrafLane is the number of roadway lanes, 

TotalTrack is the total number of tracks at a crossing, ActualISD is actual stopping sight distance 

for approach, MaxSpd is maximum typical train speeds, MinSpd is minimum typical train speeds 

for switching, TotalTrn is total daily trains, AADT is annual average daily traffic, NearbyInt is 

dummy variable representing nearby intersections, and SpdLmt is roadway speed limit on 

approach.. 

2.10 FRAôs New Model for HRGC Accident Prediction and Severity 

The FRA published an update to its accident prediction model (Brod and Gillen, 2020) to 

support grade crossing management by enabling more accurate risk ranking of HRGCs, more 

rational allocation of resources for public safety improvements and the ability to assess the 
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statistical significance of variances in the measured risk. The model is based on the zero-inflated 

negative binomial (ZINB) regression along with the Empirical Bayes (EB) method that accounts 

for crash history while correcting for ñregression to the meanò bias. A multinomial logistic 

(MNL) regression was utilized for the crash severity component having fatal, injury, and 

property damage only as the crash outcomes. The new ZINB regression model has the following 

equations (Brod and Gillen, 2020); the ZINB count model is given by: 

 

The ZINB zero-inflated model is given by: 

 

The ZINB combined model is given by:  

 

Where:  
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The estimated coefficients are as follows (Table 4.1 in Brod and Gillen, 2020): 
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The MNL crash severity model utilized grade crossing characteristics and modeled the 

probabilities of fatal, injury, and property damage-only crashes. Fatal crashes were selected as 

the reference category and the MNL estimated the probabilities of the other two categories 

relative to the reference category. The crash severity model equations were as follows. 

Injury crash (relative to fatal crash): 

 

 

 

Property damage crash (relative to fatal crash): 

 

 

Where:  

 

 

The estimated coefficients were as follows (Table 4.1 in Brod and Gillen, 2020). 
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Forecasts for injury severity can then be obtained by using the standard equations for 

multinomial models. 
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Chapter 3 Modeling Background 

This chapter presents background information on two types of models that are prevalent 

for count data such as yearly crashes at HRGCs: Poisson and the Zero Inflated Poisson/Negative 

Binomial model. 

3.1 Poisson Regression Model 

The nature of crash frequency is non-negative integers or count data and the widely 

adopted approach has been the Poisson regression model (Miaou and Lum, 1993). Poisson model 

is a parametric model in which the crash occurrence ὣ follows a Poisson distribution, which can 

be described mathematically: 

 

ὣ ͯὖέὭίίέὲ‘Ȣ                                                        (3.1) 

Where ‘ is the model parameter. So, the probability of variable ὣ taking integer values 1, 2, 3,é 

can be represented as:  

 

ὖὣ ώ
Ȧ

                                                           (3.2) 

Ὁὣ ὺὥὶὣ ‘                                                         (3.3) 

Where the mean Ὁὣ and variance ὺὥὶὣ are equal. Thus, the probability of zero is: 

 

ὖὣ π Ὡ                                                              (3.4) 

 

As the Poisson model became the basis of many studies, its variants also gained 

popularity due to the limitations of simple Poisson models. For example, the Negative 

Binomial/Poisson-Gamma model can handle over-dispersion which occurs when mean of 
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response variable is much higher than the variance while it violates the basic Poisson model 

assumptions (Milton and Mannering, 1998). In a negative binomial distribution with parameters 

‘ and , the mathematical form is as follows: 

 

ὖὣ ώ
Ȧ

                                    (3.5) 

ὖὣ π ρ ‘ ϳ                                                 (3.6) 

Ὁὣ ‘                                                                  (3.7) 

ὺὥὶὣ ‘ρ ‘                                                   (3.8) 

 

Where a quadratic function of the mean for  π, equivalent to the Poisson variance if  π. 

 

Furthermore, Lord and Mannering (Lord and Mannering, 2010) pointed out a variety of 

potential data and methodological issues in crash frequency analyses that have been identified in 

existing literature, including over-dispersion, under-dispersion, unobserved temporal and spatial 

correlation, low sample-mean and small sample size, crash-type correlation, fixed parameters, 

etc. These issues could lead to erroneously specifying analytical models and hence misleading 

inferences if not addressed properly. 

3.2 Zero-inflated Model 

Another set of models is zero-inflated Poisson and negative binomial models, designed to 

deal with a significant proportions of a response variable taking zero values or more zeros than 

one would expect in conventional count data scenario. The formulas for zero-inflated Poisson 

model is as follows, including a parameter “: 
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ὖὣ π “ ρ “Ὡ                                                 (3.9) 

Ὁὣ ρ “‘                                                             (3.10) 

ὺὥὶὣ ρ “‘ρ ‘“                                                (3.11) 

 

On the other hand, a zero-inflated negative binomial model is formulated as follows: 

 

ὖὣ π “ ρ “ ρ ‘ ϳ                                                 (3.12) 

Ὁὣ ρ “‘                                                                 (3.13) 

ὺὥὶὣ ρ “‘ρ ‘“                                                  (3.14) 

Where if  π the model is equal to a zero-inflated Poisson model. 

 

This model was used to model crash frequency. As the crash frequency is count data 

(non-negative integer), and crash occurrence at HRGC is a relatively rare event, the data is 

considered exhibiting over-dispersion and excess zero. The zero-inflated Poisson (ZIP) Model 

assumes that data distribution is a combination of Poisson distribution and logit distribution, 

which fits the circumstance of this research. Figure 3.1.1 simulates 500 samples that follow a 

zero-inflated Poisson distribution. 
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Figure 3.1 Simulated Zero-inflated Poisson Distribution 

 

As can be seen from this figure, the distribution is a skewed Poisson distribution with 

large amount of data equal to zero. Therefore, to describe the distribution, the ZIP model 

contains two parts: a Poisson model, which is responsible for predicting non-negative value, and 

a logit model for predicting excess zeros. The ZIP model can be expressed as: 

 

                                               (3.15) 

                                      (3.16) 

                                                                     (3.17) 

                                                                       (3.18) 
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                                            (3.19) 

 

where pi is the logistic link function defined by equation (3.17), ‘ is the Poisson component 

defined by equation (3.4). As can be seen, the ZIP model splits the possibility of response values 

into two scenarios: equation (3.1) describes the scenario when the count is equal to zero, while 

equation (3.2) generates count values by a Poisson model when the count is not zero. 

The coefficients can be estimated by solving its maximum likelihood function. The 

likelihood function can be expressed as: 

 

                                   (3.20) 

 

Because it is often observed in crash data that many locations have no occurrence of 

crash, by splitting roadway segments into crash-free and crash-prone categories, zero-inflated 

models have been frequently considered in research (Shankar et al., 1997; Lee and Mannering, 

2002; Lord et al., 2007). Critics have argued that the crash-free state has a long-term mean equal 

to zero, this model cannot properly reflect the crash-data generating process (Malyshkina and 

Mannering, 2010). Similarly, various other count data models were considered over the years 

including the Gamma model, the negative binomial-Lindley model, Conway-Maxwell-Poisson 

model, and so on.  
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Chapter 4 Data Collection 

This chapter provides detailed information on the data utilized throughout this research 

study. Safety data regarding rail crossings from multiple sources were collected and integrated 

for analysis, including HRGC inventory database and crash history data extracted from 

publically-available FRA data, Railroad Inventory Management System (RIMS) obtained from 

NDOT, Lancaster roadway inventory database and land use data obtained from City of Lincoln, 

Nebraska. A significant number of database variables were manually inspected and verified 

during field visits such as roadway speed limit, pavement type, land use, etc.  

4.1 FRA HRGC Inventory Database 

According to the Federal-Aid Policy Guide (FAPG 924.9(a) (1)), each state should 

maintain ña process for collecting and maintaining a record of crash, traffic, and 

highway data, including, for railroad-highway grade crossings, the characteristics of both 

highway and train trafficò (U.S. Department of Transportation, 1991). National Highway-Rail 

Crossing Inventory Reporting Requirements also states that, ñin order for the Crossing Inventory 

to serve as an effective database, States and railroads need to exchange information with each 

other and promptly update the crossing data records as changes occurò. Thus, FRA collects from 

each state and maintains a database on HRGCs for the entire US.   

Updates to HRGC inventory data are usually provided by the local coordinators and 

submitted using FRA-approved forms. These forms have specifications for different field names 

and value assignments. Authorized users must submit new values for specific field names 

accordingly. The field names, filed description and values used in this study are attached in 

Appendix A, which conformed to the FRA HRGC inventory database. Because reporting updates 

for the inventory database does not necessarily require verification from other agencies, data for 
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some fields may not be updated regularly, such as AADT and train traffic volumes. This could 

lead to outdated or erroneous data, which could affect crash predictions by models based on the 

database. Accuracy issues in the FRA crossing inventory database raise concerns for states and 

railroad companies. In addition, FRA provides geospatial resources to the public on rail 

networks, including data on HRGCs, Amtrak stations, etc. Spatial information of a given 

crossing is denoted by latitude and longitude in the database. 

 Various fields are useful when integrating crossing inventory data with crash data, such 

as crossing ID, state, county, nearest city name, etc. The inventory database also provides details 

for the train traffic traversing a crossing: total daylight thru trains, total night time thru trains, 

total transit trains, number of main tracks, number of siding tracks, number of yard tracks, 

number of transit tracks, average passenger train count per day, etc. Variables with regards to 

safety measures include presence of signs/signals, number of crossbuck assemblies, number of 

stop signs, number of yield signs, number of bells, flashing lights, channelization 

devices/medians, gate configuration, etc. The FRA inventory database also provides information 

on the crossing highway, such as number of traffic lanes crossing rail track, pavement type, 

highway functional classification, street or road name, posted highway speed limit, etc. 

4.2 FRA HRGC Crash Database 

Title 49 Code of Federal Regulations (CFR) Part 225 (US GPO, 2006) requires reporting 

of railroad-related crashes to the FRA. Specifically, FRA has made efforts to build several 

databases to gather information on evaluating railroad safety, including: train crash database, 

trespasser crash database, rail equipment crash database, highway rail crossing crash database, 

railroad casualty database, etc. FRA uses the reported crash data to summarize a yearly report on 

crashes that involve the impact of a train with a roadway user. If a crash is involved with railroad 
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signal failure or grade crossing failure, railroad companies are required to provide more details 

along with the crash report form. Furthermore, FRA requires various forms with regards to 

different scenarios, such as Form FRA F 6180.55 for injury and illness and Form FRA F 6180.57 

for Highway-Rail Accident/Incident, etc. 

 The fields available in the crash database consist of a series of categories, such as crash 

information, crossing information, train information, environmental factors, highway 

characteristics, etc. For instance, the crash information includes time of crash, AM or PM, injury 

severity outcome, number of injuries or fatalities of roadway users, number of injuries or 

fatalities of railroad employees, number of injuries or fatalities of train passengers, etc. 

Environmental factors at the time of crash consist of temperature, weather conditions, lighting 

conditions, etc. Train information includes number of cars, number of locomotives, type of train, 

train speed, etc. Additionally, other important factors such as release of hazardous materials are 

also included. Textual descriptions of crashes can also be provided in the reporting form. 

Appendix B provides the FRA HRGC crash database fields. 

4.3 Field Validation of the FRA HRGC Database  

As part of Lancaster County HRGC consistency analysis, the research team validated the 

information contained in the FRA HRGC inventory database with HRGCs in the field. HRGCs 

were taken into consideration if they were public, at-grade, and operational. The research team 

visited public rail crossings in Lancaster County and compared field conditions with those of the 

database; corrections were made to any erroneous records in the database as well as missing 

values added when available in the field. This inventory validation effort was then extended to 

Cass, Douglas, Gage, Jefferson, Otoe, Saline, Sarpy and Saunders counties. The selection of 

these additional eight counties was based on railroad network considerations, urban/rural nature 
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of a county, proximity to the University of Nebraska-Lincoln, and availability of funds in the 

project.  

Figure 4.1 illustrates the HRGC filtration process and the FRA HRGC inventory database 

variables used for Lancaster County. A similar process and the same variables were used for 

HRGC filtration in other counties. Figure 4.2 graphically illustrates the results of HRGC 

filtration process for Lancaster County. For this county, there were 565 rail crossings in the FRA 

HRGC database; however, exclusion of private, elevated (grade-separated), and closed HRGCs 

resulted in the selection of 112 HRGCs. Field visits to the selected HRGCs revealed that seven 

HRGCs were either missing or relocated thereby resulting in 105 Lancaster County HRGCs that 

were field-verified.  

 

 

Figure 4.1 HRGC Filtration Process for Lancaster County 
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Figure 4.2 Results of HRGC Filtration Process for Lancaster County 

 

 For each field-visited HRGC, a total of 53 database variables were checked and digital 

pictures of the HRGC obtained. Any incorrect values in the database were corrected per field 

conditions as well as missing values added when they were available in the field. Table 4.1 

presents a summary of the corrections and missing value additions for the nine Nebraska 

counties from field visits. In aggregate, 539 HRGCs were field-investigated and 27 (5.0%) were 

found to be either abandoned (non-operational), private (listed as public in the database) or 

altogether non-existent. This effort resulted in 2,241 values to be corrected and 1,732 missing 

values to be added giving an average of 7.4% of the database values that were changed at each 

HRGC.  
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Table 4.1 Summary of Corrections and Added Missing Values from Field Validation 

 

 

During the spring 2020 COVID-19 shutdown, the research team relied on the NDOTôs 

PathWeb system to validate the FRA HRGC database. This photo-based system is focused on 

state highways and therefore, HRGCs located only on the state highways could be checked. 

Table 4.2 presents a summary of the corrections and missing value additions using the PathWeb 

system. This effort identified 6 (2.9%) HRGCs that were either abandoned, private, or altogether 

non-existent. The number of corrected values was 670 while 109 missing values were added to 

the database for an average of 3.8% of the database values changed at each HRGC.  

 

Table 4.2 Summary of Corrections and Added Missing Values Using NDOTôs PathWeb System 

 

 

County Number of 

Corrected 

Values

Number of 

Missing Values 

Added

HRGCs VisitedAbandoned/Non-

existent/Private 

HRGCs

Percent Corrected 

and Added Missing 

Values

Lancaster 376 657 112 7 9.2

Cass 307 83 55 2 7.1

Douglas 286 108 67 3 5.9

Gage 115 347 41 4 11.3

Jefferson 174 25 46 2 4.3

Otoe 285 46 79 4 4.2

Saline 119 37 38 0 4.1

Sarpy 144 59 25 2 8.1

Saunders 435 370 76 3 10.6

Total 2241 1732 539 27 7.4

State Highway 

system

Number of 

Corrected 

Values

Number of 

Missing Values 

Added

HRGCs 

Inspected

Abandoned/Non-

existent/Private

Percent Corrected 

and Added Missing 

Values

PathWeb 2019 670 109 203 6 3.8
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Database variables that frequently contained incorrect information included: the number 

of crossbucks, number of yield signs or stop signs, number of advance warning signs, presence 

of channelization devices, crossing surface type, approach surface type and highway speed limit. 

Figure 4.3 presents an example of the inconsistency between the FRA HRGC inventory database 

and field conditions at crossing 064112B in terms of presence of yield sign, pavement type, 

approach surface type and pavement marking. Figure 4.4 shows an example of a crossing 

(crossing ID 083524P) that was abandoned but is still in the FRA HRGC inventory database. 

 

 

Figure 4.3 Data Correction Example, Crossing 064112B 
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Figure 4.4 An Example of an Abandoned Crossing (083524P) 

 

The numbers of corrected or added missing values for various variables were recorded 

for each county. For instance, figure 4.5 shows the numbers of corrected or added values for 

different inventory variables in Gage County. The variables with high incorrect values were 

HwynrSig (does nearby highway intersection have traffic signals), Bkl_FlashPost (mast-mounted 

flashing lights: back lights), and Sdl_FlashPost (mast-mounted flashing lights: side lights). 
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Figure 4.5 Corrected or Added Values of Each Variable for Gage County 

 

In summary, the combined effort of field visits and use of the PathWeb system resulted in 

inventory verification of 742 HRGCs in Nebraska; in total 2,911 values were corrected and 1,841 

missing values were added to the HRGC inventory database while 33 HRGCs were identified 

that were either abandoned, private listed as public or altogether non-existent. An Excel file 

containing the original and corrected/added values and a GIS database (including the HRGC 

digital pictures) using ESRIôs ArcMap software were created for handover to NDOT (fig. 4.6). 

In addition, the Lancaster Roadway Inventory Database and land use data from City of Lincoln 

supplemented the GIS as shown in figure 4.7. This was then used for the HRGC consistency 

analysis. 

According to the FRA HRGC inventory database, there are 2,863 public, at-grade, 

operational crossings in Nebraska. With 742 HRGCs validated via a combination of field visits 

and NDOTôs PathWeb system, 2,121 HRGCs are remain in need of inventory information 

validation. 
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Figure 4.6 GIS Database for HRGCs in Lancaster County 

 

 

Figure 4.7 Road inventory and land use data 
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4.4 Database for Updated Crash Prediction Model 

The corrected crossing inventory database records were appended to the HRGC crash 

database by using the unique crossing IDs available in the two databases to create a combined 

database for crash prediction modeling. The FRA HRGC crash database contained crash history 

data from 2008 to 2019 on Nebraska HRGCs. For model estimation, the yearly number of 

reported crashes for each HRGC was considered an observation. Using this framework, 393 

observations were associated with crashes. Of these, 224 (57.0%) observations were crashes with 

no injuries, 124 (31.6%) observations with injuries and 45 (11.4%) observations involved fatal 

crashes. Model parameter estimation was based on 2008-2018 crash plus inventory data while 

the 2019 crash plus inventory data were used for the model prediction validation. Chapter 5 

provides details of the modeling efforts. 

4.5 Descriptive Statistics 

After integrating data from various sources, descriptive statistics of the variables used 

through the model estimation and evaluation process are presented. Note that for each crossing 

there is one observation for each year. Figure 4.8 shows a histogram plot demonstrating the 

distribution of the studied highway rail grade crossings by natural logarithmic values of AADT. 

It can be observed that the maximum and minimum values for AADT are around 50,000 vehicles 

per day and one vehicle per day, respectively. The average AADT for all considered crossings is 

approximately 672 vehicles per day. 
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Figure 4.8 Histogram of Highway Rail Grade Crossings by AADT (natural logarithm) 

 

Figure 4.9 shows a histogram plot demonstrating the distribution of the studied highway 

rail grade crossings by the number of through trains (including day and night). It can be observed 

that the maximum and minimum values for the number of through trains are 118 and zero trains 

per day, respectively. The average value for all considered crossings is approximately 16.47 

trains per day.  
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Figure 4.9 Histogram of Highway Rail Grade Crossings by Number of Through Trains 

 

Figure 4.10 shows the distribution of the studied highway rail grade crossings by 

highway classification (urban or rural). It can be observed that 92.2% of the roadways (a total of 

2,192 crossings, excluding missing values) at HRGCs were classified as rural.  
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Figure 4.10 Distribution of Highway Rail Grade Crossings by Highway Classification 

 

According to FRAôs classification of highway functional classification, roadways can be 

categorized as six levels: (1) interstate; (2) other freeway and expressway; (3) other principal 

arterial; (4) minor arterial; (5) collector; and (6) local roadway. Figure 4.11 shows the 

distribution of the HRGCs by highway functional classification. It can be observed that 1,693 

roadways were classified as local roads (77.5% of all the roadways). In addition, there were 136 

minor collector roadways, 269 major collector roadways, 73 minor arterial roadways, 13 other 

principal arterial roadways and 1 other freeways and expressway. 
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Figure 4.11 Distribution of Highway Rail Grade Crossings by Highway Function Classification 

 

Figure 4.12 presents the distribution of the HRGCs by highway lanes. As shown in the 

figure, the minimum number of traffic lanes at the HRGCs was one lane, while the maximum 

value is eight lanes. The distribution indicates the majority of the roadways at HRGCs (85.2%) 

consisted of two traffic lanes. 
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Figure 4.12 Distribution of Highway Rail Grade Crossings by Number of Traffic Lanes  

 

In terms of the dependent variable, crash frequency at HRGCs, based on the crash history 

data on a yearly basis, only five HRGCs were associated with two crashes while 388 HRGCs had 

only one crash and the rest of the dataset had zero crashes. It can be observed that the majority of 

observations (99.0%) did not involve a crash. The disproportionate distribution of zero values 

warrants the investigation of a zero-inflated model as discussed in Chapter 3. 
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Chapter 5 HRGC Crash Prediction Model Estimation 

This chapter covers the first research objective, which was to update NDOTôs 1999 

Nebraska Accident Prediction Model for rail crossings using the latest crash and rail crossing 

inventory data. It presents the estimation of the 2020 Nebraska HRGC Crash Prediction Model 

based on the dataset created for model estimation including the model estimation process and the 

different variants that were explored.  

 The 1999 Nebraska Accident Prediction Model for rail crossings (HNTB, 1999) was 

based on 5-year data. This research utilized 11-year (2008-2018) crash and HRGC inventory data 

for the 2020 Nebraska HRGC Crash Prediction Model estimation and 2019 crash and HRGC 

inventory data for validation of the model predictions. The 11-year dataset is also referred to as 

training data in this report. The model estimation process aimed to investigate statistical 

associations of various factors (e.g., crossing characteristics, exposure measures, land use, etc.) 

with crashes at HRGCs. In this chapter, various statistical modeling techniques (e.g., Poisson or 

Negative Binomial) are explored and evaluated based on characteristics of the data and statistical 

tests. The corresponding results present a set of models (equations) for the expected number of 

crashes per year at Nebraska public HRGCs. Note that the data utilized for model estimation 

included HRGC corrected inventory data resulting from field visits and use of the NDOT 

PathWeb system as described previously in this report. 

The estimated model equations were validated by predicting crashes for 2019 and 

comparing those results with the actual crashes reported in 2019. Additionally, results of the 

model equations were compared to those obtained from the 1999 Nebraska Accident Prediction 

Model as well as the new FRA Accident Prediction Model (Brod and Gillen, 2020) when applied 

to Nebraska data. Consequently, the 2020 Nebraska HRGC Crash Prediction Model 
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outperformed the 1999 Nebraska Accident Prediction Model and the new FRA Accident 

Prediction Model. 

5.1 Analysis of Accident Prediction Models Based on Various Criteria 

This section presents the estimation results of candidate crash prediction models with 

descriptions of the model selection procedure. The HRGC crash data for 2019 were used to 

assess goodness of fit of the candidate crash models based on various performance metrics. 

Specifically, the model selection criteria included mean of squared error (MSE) and root mean of 

squared error (RMSE), logarithm score, Akaike information criteria (AIC) and the percent 

difference in 2019 crash predictions.  

There were a few models that could be appropriate for modeling the HRGC crash data: 

Conventional Poisson regression and Negative Binomial regression (to address over-dispersion), 

Zero-inflated Poisson/Negative Binomial models (to account for excess zero crashes) and 

Poisson/Negative Binomial models with mixed effects, assuming normality and homogeneity of 

variance of residuals. For each model framework, variable selection was performed based on the 

results of AIC, logarithm score and forward selection. In addition, a ñsmallò model was also 

considered as an important benchmark, which was based on the variables used in the existing 

NDOT Accident Prediction Model (HNTB, 1999). To determine the best performing model, 

several procedures were conducted such as over-dispersion test, model selection, variable 

selection, etc. and the results are as follows. 

5.1.1 Over-dispersion test 

A standard Poisson regression models the conditional mean Ὁὣ ‘, which is assumed 

equal to the variance of the dependent/response variable. The over-dispersion test assesses the 

hypothesis that this assumption holds against the alternative that the variance is of the form: 



 

39 

 

ὺὥὶὣ ‘ρ ‘ 

 

Where a quadratic function of the mean for  π, equivalent to the Poisson variance if  π. 

Over-dispersion corresponds to  π and underdispersion to  π. The coefficient  can be 

tested with the corresponding z statistic which is asymptotically standard normal under the null 

hypothesis. By building a Poisson model on the model estimation dataset, the over-dispersion 

test yields a p-value of 0.24 which indicated a lack of significant evidence of over-dispersion or 

under-dispersion. It can also be validated by examining the mean and variance of the response 

variable. The yearly mean crash frequency of the training dataset was 0.0098 (crashes) while the 

variance was 0.0010 (crashes2). Thus, estimating a Poisson model was viable for this dataset and 

there is was no need for estimating a Negative Binomial models.  

5.1.2 Candidate model performance 

The US DOT formula has an initial model and two variants (referred to as weighted and 

normalized). The initial model can be estimated using the following equation: 

 

ὥ ὑϽὉὍϽὓὝϽὈὝϽὌὖϽὓὛϽὌὝϽὌὒ 

Where: 

ὥ is the initial crash prediction outcome; 

ὑ is the constant; 

ὉὍ is the factor for exposure index based on the product of highway and train traffic; 

ὓὝ indicates the factor for the number of main tracks; 

ὈὝ indicates the factor for the number of through trains per day during daylight; 

Ὄὖ indicates the factor for highway pavement status; 
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ὓὛ indicates the factor for maximum timetable speed; 

ὌὝ indicates the factor for highway type; 

ὓὛ indicates the factor for the number of highway lanes; 

 

This initial model has two variants, based on the values of the highway-rail grade 

crossing characteristic factors such as traffic control devices installed at a given highway-rail 

grade crossing: (a) passive; (b) flashing lights; and (c) gates.  

For instance, the ñweightedò model or the second crash prediction is formulated as 

follows: 

 

ὄ
Ὕ

Ὕ Ὕ
ὥ

Ὕ

Ὕ Ὕ

ὔ

Ὕ
 

Where: 

ὥ is the initial crash prediction outcome; 

ὄ is the second crash prediction outcome; 

ὔ is the number of crashes occurred in Ὕ years; 

Ὕis a weighting factor that equals 
Ȣ

; 

 

The ñnormalizedò model can be formulated by normalizing the constant, which is the 

sum of the predicted crashes multiplied by the corresponding normalizing constant equal to the 

number of crashes, which occurred in a recent period. The normalizing procedure is different 

depending on the installed control devices at each highway-rail grade crossings separately. 

Similarly, the 1999 NDOT Accident Prediction model (HNTB, 1999) has ñweightedò and 

ñnormalizedò formulas as well. 
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Table 5.1 presents the performances of different candidate crash prediction models. 

Evaluation metrics such as AIC, MSE, logarithm score and prediction outcome are reported for 

comparison. 
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Table 5.1 Performance of Candidate Nebraska Crash Prediction Models 

Candidate models AIC MSE RMSE 

Logarithm 

score 

Predicted 

outcome 

Percentage 

difference in 

prediction 

results for 

2019 

Poisson 

All variables 2408.142 0.008132886 0.090182515 0.05391566 21.078 -15.69% 

Small 2452.267 0.008001879 0.089453222 0.05533638 21.262 -14.95% 

Selected variables based on AIC 2422.401 0.008027479 0.0895962 0.05217232 21.078 -15.68% 

Selected variables based on LR 

test 

2418.829 0.008021923 0.089565189 0.05388908 21.079 -15.68% 

Selected variables based on 

stepwise selection 

2434.824 0.008712828 0.09334253 0.04775778 26.156 +4.62% 

Mixed effects all variables 2407.311 0.008138168 0.090211795 0.05409535 21.077 -15.69% 

Mixed effects small 2442.536 0.007960817 0.089223411 0.05557907 21.262 -14.95% 
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Mixed effects all variables based 

on AIC 

2421.009 0.008036451 0.089646255 0.05273017 21.079 -15.68% 

Mixed effects all variables based 

on LR test 

2411.967 0.008080538 0.089891813 0.05287434 21.078 -15.69% 

Zero-

inflated 

Poisson 

All variables 2382.547 0.008289844 0.09104858 0.04591305 21.086 -15.65% 

Small 2437.525 0.00802454 0.089579797 0.09737134 21.266 -14.93% 

Selected variables based on AIC 2393.524 0.008146457 0.090257725 0.1037519 21.080 -15.68% 

Selected variables based on 

stepwise selection 

3246.723 0.008712828 0.09334253 0.0759834 28.082 +12.33% 

Mixed effects small 2408.802 0.008115772 0.09008758 0.06357789 14.731 -41.07% 

Mixed effects all variables based 

on LR test 

2399.02 0.008027471 0.089596155 0.07578753 14.439 -42.24% 

 

  












































































